
OPP, FILE COPY
I REPORT DOCUMENTATION PAGE 0ttrw0-.1

I II S ft" ft aft" a "A -A2 3 736 "P,'- DAT- ---RN-,,5 -AE
A D A 22 Fial 27 Oct. 1989 to 27 Oct. 1990

4.TWLEMSSUTWLE Adia Compiler Validation Summary Report:DDC INTER 5RSS iE

ATIONAL A/S DACS-386/UNIX, Version 4.4, ICL DRS300 (Host) to
CL DRS 300 (Target), 891027S1.10185

National Institute of Standards and Technology
Gaithersburg, MD
USA

7. PEWO.IW OFMANMafON N ADAGa(u) AWME"S 1940MMN OASMZMATION
National Institute of Standards and

Technology

National Computer Systems Laboratory
Bldg. 255, Rm. A266
Gaithersburg, MD 20899
USA
. - - 3... - AAENC MnAle(S) ANDWUESS(ES) 10. 38PCSOOR1CA4ONnOAGENCy

Ada Joint Program Office REPO~rNMBER

United States Department of Defense
Washington, D.C. 20301-3081

11. UUPPLEhENTAWV NOTES

1'. MR VINW.IAVIA& fY SMATENT ia. owTRmSJTIN CM

Approved for public release; dfstfibution unlimited.

IS. A8STPA M Udt M i a wds)~

DDC INTERNATION A/S DACS-386/UNIX, Version 4.4, Gaithersburg, MD, ICL DRS300 under DRS/NX
Version 3,Level I (Host & Target), ACVC 1.10.

-. DTIC
LELECTE

SJUN27M D

14.3&.MUOC Ada programming language, Ada Compiler Validation iI. NUKENOF PM
Summary Report, Ada Compiler Validation Capability, Validation
Testing, Ada Validation Office, Ada Validation Facility, ANSI/MIL- UPAMOCE
S--113TD IA Ada Joint Program Office

17. le.yuu, =T=.5 Y.fI5UrAT0I4 *. A 1

UNCLASSIFIED UNI C IUNCLASSIFIED

.. ,.o,,.,,,, 90 06 25 122 "

AVF Control Number: NIST89DDC580 3 1.10
DATE COMPLETED BEFORE ON-SITE: 10-02-89
DATE COMPLETED AFTER ON-SITE: 10-30-89

Ada Compiler Validation Summary Report:

Compiler Name: DACS-386/UNIX, Version 4.4

Certificate Number: 891027S1.10185

Host: ICL DRS300 under DRS/NX, Version 3, Level I

Target: ICL DRS300 under DRS/NX, Version 3, Level 1

Testing Completed October 27, 1989 Using ACVC 1.10

This report has been reviewed and is approved.

A 'Validation F aoi Ada Vali ion Fac y
Dr. David K. Jeff rsoy Mr. L. Arnold Jo sd
Chief, Information Systems Manager, Softwar &t-andards
Engineering Division Validation Group
National Computer Systems Engineering Division
Laboratory (NCSL) National Computer Systems

National Institute of Laboratory (NCSL)
Standards and Technology National Institute of

Building 225, Room A266 Standards and Technology
Gaithersburg, MD 20899 Building 225, Room A266

Gaithersburg, MD 20899

-11 T GAcoessloi For
Ada Validation'Otganization
Dr. John F. Kriaher NTIS GRA&I
Institute for Defense Analyses DTIC TAS l
Alexandria VA 22311 Unin.eInced 5]

ju._tiflP cal. 1on ,

Director
Department of Defense Al
Washington DC 20301

AVF Control Number: NIST89MC580 3 1. 10
TVSR CPI! F RE Ol-SITE: 10-02-89

DAT VSR C3AP1=D AFTER CH-SIrE: 10-30-89
VER M0DIF7ED PE AVO CCOMEIS: 12-14-89

DAM VSR MDDIFIED PER AVO COMEIS: 04-30-90

Ada CCHPL
VALIDATICN SWUM REPCRE:

certificate Number: 891027S1.10185
MDC flMMMCNL A/S

DACS-386/UNIX, Version 4.4
ICL EM300 Host and ICL ES300 Target

Copletion of On-Site Testing:
27 October 1989

Prepared By:
Software Standards Validation Group
National Cpiter Systems Laboratory

National Institute of Standards and Technology
Baildirn 225, Room A266

Gait g, Marylard 20899

Prepared For:
Ada Joint Program Office

United States Departmnt of Defense
Washingrto DC 20301-3081

AVF Control Number: NIST89DDC580 3 1.10
DATE COMPLETED BEFORE ON-SITE: 10-02-89
DATE COMPLETED AFTER ON-SITE: 10-30-89

Ada Compiler Validation Summary Report:

Compiler Name: DACS-386/UNIX, Version 4.4

Certificate Number: 891027SI.10185

Host: ICL DRS300 under DRS/NX, Version 3, Level 1

Target: ICL DRS300 under DRS/NX, Version 3, Level I

Testing Completed October 27, 1989 Using ACVC 1.10

This report has been reviewed and is approved.

A a Validation Fa yli Ada Validation FacTI y
Dr. David K. Jefwrso I Mr. L. Arnold Johns
Chief, Information Systems Manager, Softwar tandards
Engineering Division Validation Group
National Computer Systems Engineering Division
Laboratory (NCSL) National Computer Systems

National Institute of Laboratory (NCSL)
Standards and Technology National Institute of
Building 225, Room A266 Standards and Technology
Gaithersburg, MD 20899 Building 225, Room A266

Gaithersburg, MD 20899

Ada Validation Organization '

Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director
Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2

1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES 13....................1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN. TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . 3-6
3.7 ADDITIONAL TESTING INFORMATION 3-7
3.7.1 Prevalidation 3-7
3.7.2 Test Method3-7
3.7.3 Test Site 3-8

APPENDIX A CONFORMANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX E COMPILER OPTIONS AS SUPPLIED BY
DDC INTERNATIONAL A/S

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of Zing this compiler using the Ada Compiler
Validation Capability 0 (ACVC).- An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that
is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies- -for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report.
The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. ' The purpose of validating is to ensure
conformity of the compiler to the Ada Standard by testing that the
compiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies behavior that is, implementation dependent, but is permitted
by the Ada Standard. Six olasses of tests are used. These tests are
designed to perform checks at compile time, at link time, and during
execution.

1-1

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an

Ada compiler. Testing was carried out for the following purposes:

* To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

* To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

* To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by the AVF according to
procedures established by the Ada Joint Program Office and administered
by the Ada Validation Organization (AVO). On-site testing was completed
27 October 1989 at Lyngby, Denmark.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedom of Information
Act" (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Software Standards Validation Group
National Computer Systems Laboratory
National Institue of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

1-2

Questions regarding this report or the validation test results should be

directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Proredures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programming language.

Ada Commentary An Ada Commentary contains all information relevant
to the Commentary point addressed by a comment on
the Ada Standard. These comments are given a
unique identification number having the form
AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and

1-3

technical support for Ada validations to ensure
consistent practices.

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,
including cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the
test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding
a particular feature or a combination of features to the
Ada Standard. In the context of this report, the term
is used to designate a single test, which may comprise
one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be
incorrect because it has an invalid test objective,
fails to meet its test objective, or contains illegal or
erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce errors
because of the way in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal
Ada programs with certain language constructs which cannot be verified
at run time. There are no explicit program components in a Class A test

1-4

to check semantics. For example, a Class A test checks that reserved
words of another language (other than those already reserved in the Ada
language) are not treated as reserved words by an Ada compiler. A Class
A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check the run time system to ensure that legal Ada
programs can be correctly compiled and executed. Each Class C test is
self-checking and produces a PASSED, FAILED, or NOT APPLICABLE message
indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a
conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test compiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the
Ada Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is
rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
vsssage before any declarations in the main program or any units
referenced by the main program are elaborated. In some cases, an
implementation may legitimately detect errors during compilation of the
test.

Two library units, the package REPORT and the procedure CHECKFILE,
support the self-checking features of the executable tests. The package
REPORT provides the mechanism by which executable tests report PASSED,

1-5

FAILED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat some compiler optimizations allowed by the Ada
Standard that would circumvent a test objective. The procedure
CHECK FILE is used to check the contents of text files written by some
of the Class C tests for Chapter 14 of the Ada Standard. The operation
of REPORT and CHECKFILE is checked by a set of executable tests. These
tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then
the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all
implementations in separate tests. However, some tests contain values
that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A
list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an
implementation is considered each time the implementation is validated.
A test that is inapplicable for one validation is not necessarily
inapplicable for a subsequent validation. Any test that was determined
to contain an illegal language construct or an erroneous language
construct is withdrawn from the ACVC and, therefore, is not used in
testing a compiler. The tests withdrawn at the time of this validation
are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under
the following configuration:

Compiler: DACS-386/UNIX, Version 4.4

ACVC Version: 1.10

Certificate Number: 891027S1.10185

Host Computer:

Machine: ICL DRS300

Operating System: DRS/NX, Version 3, Level 1

Memory Size: 8 MBytes

Target Computer:

Machine: ICL DRS300

Operating System: DRS/NX, Version 3, Level 1

Memory Size: 8 MBytes

Communications Network: VAX-8530 via Ethernet (using DNICP net
software utility) via SUN-3/60
Workstation via streamer tape to the ICL
DRS300.

2-i

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing
723 variables in the same declarative part. (See test
D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (8
tests).)

(3) The compiler rejects tests containing block statements
nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined
types SHORT INTEGER, LONGFLOAT, and LONGINTEGER in the
package STANDARD. (See tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at
which constraints are checked are not defined by the language.
While the ACVC tests do not specifically attempt to determine
the order of evaluation of expressions, test results indicate
the following:'

(1) All of the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same

precision as the base type. (See test C35712B.)

2-2

(3) This implementation uses no extra bits for extra precision
and uses all extra bits for extra range. (See test
C35903A.)

(4) NUMERICERROR is raised when an integer literal operand in
a comparison or membership test is outside the range of the
base type. (See test C45232A.)

(5) NUMERICERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the
range of the base type. (See test C45252A.)

(6) Underflow is gradual. (See tests C45524A..K (11 tests).)

d. Rounding.

The method by which values are rounded in type conversions is
not defined by the language. While the ACVC tests do not
specifically attempt to determine the method of rounding, the
test results indicate the following:

(1) The method used for rounding to integer is round to even.
(See tests C46012A..K (11 tests).)

(2) The method used for rounding to longest integer is round to
even. (See tests C46012A.'.K (11 tests).)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test
C4AO14A.)

e. Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINTERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

(1) Declaration of an array type or subtype declaration with
more than SYSTEM.MAXINT components raises NUMERICERROR.
(See test C36003A.)

(2) NUMERIC ERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components. (See test C36202A.)

(3) NUMERIC ERROR is raised when 'LENGTH is applied to an array
type with SYSTEM.MAXINT + 2 components. (See test
C36202B.)

2-3

(4) A packed BOOLEAN array having a 'LENGTH exceeding
INTEGER'LAST raises NUMERIC ERROR when declaring two packed
Boolean arrays with INTEGERTLAST + 3 components. (See test
C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERICERROR when the array
type is declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERICERROR or CONSTRAINTERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However,
lengths must match in array slice assignments. This
implementation raises NUMERIC ERROR when the array type is
declared. (See test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the
expression is evaluated in its entirety before
CONSTRAINTERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. (See test C52013A.)

g. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, the
test results indicate that all choices are evaluated before
checking against the index type. (See tests C43207A and
C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised before all choices are evaluated
when a bound in a non-null range of a non-null aggregate
does not belong to an index subtype. (See test E43211B.)

2-4

h. Pragmas.

(1) The pragma INLINE is supported for functions or procedures.
(See tests LA3004A..B (2 tests), EA3004C..D (2 tests), and
CA3004E..F (2 tests).)

i. Generics.

(1) Generic specifications and bodies cannot be compiled in
separate compilations. (See tests CA2009C, CA2009F,
BC3204C, and BC3205D.)

Generic package declarations and bodies can be compiled in
separate compilations so long as no instantiations of those
units precede the bodies. This compiler requires that a
generic unit's body be compiled prior to instantiation, and
so the unit containing the instantiations is rejected.

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

(3) Generic subprogram declarations and bodies can be compiled
in separate compilations. (See test CAl012A.)

(4) Generic library subprogram specifications and bodies can be
compiled in separate compilations. (See test CAl012A.)

(5) Generic non-library subprogram bodies cannot be compiled in
separate compilations from their stubs. (See test
CA2009F.)

(6) Generic package declarations and bodies cannot be compiled
in separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

(7) Generic library package specifications and bodies cannot be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

(8) Generic non-library package bodies as subunits cannot be
compiled in separate compilations. (See test CA2009C.)

(9) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

J. Input and output.

(1) The package SEQUENTIAL_IO can be instantiated with

2-5

unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C,
EE2201D and EE2201E.)

(2) The package DIRECTIO can be instantiated with
unconstrained array types but only if the maximum element
size supported for DIRECT 10 is 2_147_483_647 bits;
otherwise, USEERROR is raised. (See tests AE2101H and
EE2401D.)

(3) The package DIRECT_10 can be instantiated with record types
with discriminants without defaults.' (See test EE2401G.)

(4) USEERROR is raised when Mode INFILE is not supported for
the operation of CREATE for SEQUENTIAL I0. (See test
CE2102D.)

(5) USE-ERROR is raised when Mode INFILE is not supported for
the operation of CREATE for DIRECT_IO. (See test CE21021.)

(6) USEERROR is raised when Mode INFILE is not supported for
the operation of CREATE for text files. (See test
CE3102E.)

(7) Modes INFILE and OUTFILE are supported for text files.
(See test CE31021..K).

(8) RESET and DELETE operations are supported for
SEQUENTIALIO. (See tests CE2102G and CE2102X.)

(9) RESET and DELETE operations are supported for DIRECTIO.
(See tests CE2102K and CE2102Y.)

(10) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G (2 tests), CE3104C, CE3110A, and
CE3114A.)

(11) Overwriting to a sequential file truncates to the last
element written. (See test CE2208B.)

(12) Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

(13) Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

(14) Temporary text files are given names and deleted when
closed. (See test CE3112A.)

(15) More than one internal file can be associated with each
external file for sequential files when writing or reading.
(See tests CE2107A..E (5 tests), CE2102L, CE2110B, and

2-6

CE2111D.)

(16) More than one internal file can be associated with each
external file for direct files when writing or reading.
(See tests CE2107F..H (3 tests), CE2110D and CE2111H.)

(17) More than one internal file can be associated with each
external file for text files when writing or reading. (See
tests CE3111A, CE3111D..E (2 tests), and CE3114B.)

2-7

.-&. .. ---- mm 11

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 433 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for
201 executable tests that use floating-point precision exceeding that
supported by the implementation. Modifications to the code, processing,
or grading for 74 tests were required to successfully demonstrate the
test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 123 1132 1897 16 26 46 3240

Inapplicable 6 6 418 1 2 0 433

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 _ a4 - - 7 --A 1 14

Passed 195 572 554 247 172 99 161 331 135 36 250 191 297 3040

Inapplicable 17 77 126 1 0 0 5 1 2 0 2 178 24 433

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time
of this validation:

A39005G B97102E C97116A BC3009B CD2A62D CD2A63A
CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C
CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D CD2A76A
CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G CD2A84M
CD2A84N CD2B15C CD2DllB CD5007B CD50110 CD7105A
CD7203B CD7204B CD7205C CD7205D CE2107I CE3111C
CE3301A CE3411B E28005C ED7004B ED7005C ED7005D
ED7006C ED7006D

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a'compiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 433
tests were inapplicable for the reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)

3-2

C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

b. C241131..K (3 tests) are not applicable because the line length of
the input file must not exceed 126 characters.

C. C35508I, C35508J, C35508M, C35508N, ADlC04D, AD3015C, AD3Ol5F,
AD3015H, AD3Ol5K, CDlC04B, CDlC04C, CDlC04E, CD2A23C, CD2A23D,
CD2A24C, CD2A24D, CD2A24G, CD2A24H, CD3015A, CD3015B, CD3Ol5D,
CD3Ol5E, CD3015G, CD3015I, CD3015J, CD3015L, CD4051A, CD4051B,
CD4051C, CD4051D (30 tests) are not applicable because this
implementation does not support the specified change in
representation for derived types.

d. C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORT-FLOAT.

e. A39005E, C87B62C, CDl009L, CDlC03F, CD2DllA, CD2Dl3A, ED2A56A (7
tests) are not applicable because 'SMALL clause is not supported.

f. C45231D, CD71OlG, and B86001X, are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, LONGINTEGER, or SHORTINTEGER.

g. C45531M, C45531N, C45532M, and C45532N use fine 48 bit fixed point
*base types which are not supported by this compiler.

h. C455310, C45531P, C455320, and C45532P use coarse 48 bit fixed
point base types which are not supported by this compiler.

i. C4AO13B is not applicable because the evaluation of an expression
involving 'MACHINERADIX applied to the most precise floating-point
type would raise an exception; since the expression must be static,
it is rejected at compile time.

J. D56001B uses 65 levels of block nesting which exceeds the capacity
of the compiler.

k. B8600lZ is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT, or
LONG-FLOAT.

1. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

m. C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

n. CA2009C is not applicable because this implementation does not

3-3

permit compilation of generic non-library package bodies in
separate files fram their specifications.

o. CA2009F is not applicable because this iplementation does not
permit campilation of generic ncn-library subprogram bodies in
separate files from their specifications.

p. BC3204C and BC3205D are not applicable because this imple ntation
does not permit campilation of generic library package bodies in
separate files from their specifications.

q. CDI009C, CD2A41A..B, CD2A41E, and CD2A42A..J (14 tests) are not
applicable because this implementation does not support the 'SIZE
clause for floating-point types.

r. CD2A51C, CD2A52A.. D, CD2A52G..J, CD2A53A.. E, CD2A54A..D,
CD2A54G..J (22 tests) are not applicable because this
implementation does not support the 'SIZE clause for a fixed-point
types.

S. C)2A61A..L, CD2A62A..C, CD2A64A..D, CD2A65A..D, CD2A71A..D,
CD2A72A..D, CD2A74A..D, CD2A75A..D (39 tests) are not applicable
because this implementation does not support the 'SIZE clause for
an array type which does not imply compression of inter-cmponent
gaps.

t. CD2A84B..I and CD2A84K..L (10 tests) are not applicable because
this implementation does not support the SIZE clause other than the
default size for an access type.

u. CD4041A is not applicable because this implementation does not
support the alignment clauses for alignments other than
SYSTEM.SIORAGE_UNIT for record representation clauses.

v. CD5003B..I, CD5011A, CD5011C, CD5011E, CD5OllG, CD5011I, CD5011K,
CD5011M, CD5011Q, CD5012A..B, CD5012E..F, CD5012I, CD5012M,
CD5013A, CD5013C, CD5013E, CD5013G, CD50131, CD5013K, CD5013M,
CD50130, CD5014T, CD5014V..Z (36 tests) are not applicable because
this implementation does not support non-static address clauses for
a variable.

W. CDS011B, CD5011D, CD5011F, CD5011H, CD5011L, CD5011N, CD5011R,
C5011S, CD5012C..D, CD5012G..H, CD5012L, CD5013B, CD503D,
CD5013F, Ca5013H, CD5013L, CD5013N, CQ5013R, (D5014U (21 tests) are
not applicable because this iplenentation does not support
non-static address clauses for a constant.

x. CD5012J, CD5013S, CD5014S (3 tests) are not applicable because this
implementation does not support non-static address clauses.

y. CE2102E is inapplicable because this implementation supports CREATE

with mr_FILE mode for SE=RIALTo.

3-4

z. CE2102F is inapplicable because this implenentation supports CREATE
with IN=T_FILE mode for DIRECT_10.

aa. CE2102J is inapplicable because this implementation supports CRATE
with CUT_FILE mode for DIRECT I0.

ab. CE2102N is inapplicable because this implemntation supports OPEN
with INME mode for SBEMILIO.

ac. CE21020 is inapplicable because this implementation supports RESET
with INFILE mode for SEQUEIAIO.

ad. CE2102P is inapplicable because this implementation supports OPEN
with wrT_Fir mode for S 1TIAL_1O.

ae. CE2102Q is inapplicable because this implementation supports RESET
with UTFILE mode for SD L _I0.

af. CE2102R is inapplicable because this implementation supports OPEN
with INOUrFIIE mode for DIRECT_IO.

ag. CE2102S is inapplicable because this implementation supports RESET
with INOUTFILE mode for DIM=_1O.

ah. CE2102T is inapplicable because this implementation supports OPEN
with INFILE mode for DIRECT_I0.

ai. CE2102U is inapplicable because this implementation supports RESET
with IN FILE mode for DIRECT I0.

aj. CE2102V is inapplicable because this implementation supports OPEN
with WST FILE mode for DIRECT I0.

ak. CE2102W is inapplicable because this implementation supports RESET
with UT 1FILE mode for DIRECT IO.

al. CE2105A is inapplicable because CREATE with IN FILE mode is not
supported by this implementation for SEVUEIAL _10.

am. CE2105B is inapplicable because (MAT with IN FILE mode is not
supported by this implementation for DIRECT 10.

an. CE3102F is inapplicable because text file RESET is supported by
this i plmimnation.

ao. CE3102G is inapplicable because text file deletion of an external
file is supported by this implementation.

ap. CE3102I is inapplicable because text file CREATE with (W FILE mode
is supported by this implewntation.

3-5

aq. CE3102J is inapplicable because text file OPEN with IN_FILE mode is
supported by this implementation.

ar. CE3102K is inapplicable because text file OPEN with rFILE mode
is suported by this iaplementation.

as. CE3109A is inapplicable because text file CREATE with IN FILE mode
is not supported by this filiml ntation.

at. CE3111B and CE3115A simultaneously associate input and output
files with the same external file, and expect that output is
immediately written to the external file and available for reading;
this implementation buffers files, and each test's attempt to read
such output (at lines 87 & 101, respectively) raises ED_EROR.

au. EE2401D is inapplicable because the maxim= element size supported
for DIRECT_I0 is 2_147_483_647 bits. USEERROR is raised.

3.6 TEST, PROCESSING, AND EVAluATI N MDIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to ccmpensate for legitimate
implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
ccupletion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that was not anticipated
by the test (such as raising one exception instead of another).

Modifications were required for 74 tests.

The following 65 tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B22003A B26001A B26002A B26005A B28001D B28003A B29001A
B2AO03A B2AO03B B2A003C B33301A B35101A B37106A B37301B
B37302A B38003A B38003B B38009A B38009B B51001A B53009A
B54AOlC B54A01H B55A01A B61001C B61001D B61001F B61001H
B61001I B61001M B61001R B61001S B61001W B67001H B91001A
B91002A B91002B B91002C B91002D B91002E B91002F B91002G
B91002H B910021 B91002J B91002K B91002L B95030A B95061A
B95061F B95061G B95077A B97103E B97104G BA1101B BC1109A
BC1109C BC1109D BC1202A BC1202B BC1202E BC1202F BC1202G
BC2001D BC2001E

The following 9 tests contain modifications to their respective scurce
code files:

AD7006A wrongly assmes that an expression in an assignment

3-6

statement is of type universal integer, and so should deliver a
correct result that is in the range of type INTEGER. This
implementation is correct in treating the expression a being of
type INTG; an exception is raised because the operand
SYSM.MESIZE exceeds INTEGER'IAST.

The iplemnter's iirification of this test (declaring the assigned
- variable I to be of type LC=NG_TE) is ruled to be an
acceptable mans to passing this test by the AVO.

C34007A, C34007D, C34007G, C34007J, C34007M, C34007P, C34007S, and
C87B62B (8 tests) The AVO accepts the implementer's argument that,
without there being a STORAGE SIZE length clause for an access
type, the meaning of the attribute 'STORAGE SIZE is undefined for
that type. Therefore, a length clause has been added in these
tests in order to alter the default size of a collection. 1024 was
used for all of the above tests except for C34007D and C34007G
which used 2048.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10
produced by the DACS-386/UNIX, Version 4.4 compiler was submitted to
the AVF by the applicant for review. Analysis of these results
demonstrated that the ccopiler successfully passed all applicable tests,
and the compiler exhibited the expected behavior on all inapplicable
tests.

3.7.2 Test Method

Testing of the DACS-386/UNIX, Version 4.4 compiler using ACVC Version
1.10 was conducted on-site by a validation team from the AVF. The
configuration in which the testing was performed is described by the
following designations of hardware and software ccuponents:

Host compiter: ICL ES300
Host operating system: DRS/NX, Version 3, Level 1
Target ccmpxter: ICL EM300
Target operating system: DRS/NX, Version 3, Level 1
Cepi ler: DACS-386/UNIX, Version 4.4

The ACVC Test Suite was loaded onto a VAX-8350 from the magnetic tape.
The ACVC Test Suite was then downloaded onto the ICL ER330 frA the
VAX-8530 via Ethernet (using ENICP net software utility) via SUN-3/60
Workstation %ia streamar tape to the ICL EPS300.

A magnetic tape containing all tests except for withdrawn tests was
taken on-site by the validation team for processing. Tests that make
use of inplementatian-specific values ware customized on-site. Tests

3-7

requiring modifications during tte prevalidation testing were modified
on-site.

=ST Mo ONUM

The contents of the magnetic tape were loaded onto a VAX-8350 and
transferred to the host computer, ICL ES300, via Ethernet (using CNICP
net software utility) via SUN-3/60 Workstation via streamer tape.

After the test files were loaded to disk, the full set of tests was
compiled and linked on the ICL CPS300, and all executable tests were run
on the ICL EPS300. Results were transferred from the ICL IFS300 to the
VAX-8530 via Ethernet (using ENICP net software utility) via SUN-3/60
Workstation via streamer tape. The results were then printed from the
VAX-8350 compter.

The ccmpiler was tested using carxl scripts provided by DDC
I 'EROTCNAL A/S and reviewed by the validation team. The compiler was
tested using the following option settings. See Appendix E for a
complete listing of the compiler options for this implementation.

-L
-/s

Tests were compiled, linked, and executed (as appropriate) using a
single host and target computer. Test output, compilation listings, and
job logs were captured on magnetic tape and archived at the AVF.
Selected listings examined on-site by the validation team were also
archived.

3.7.3 Test Site

Testing was conducted at Lyngby, Denmark and was completed on 27 October
1989.

3-8

APPENDIX A

DECLARATION OF CONFORMANCE

DDC INTERNATIONAL A/S has submitted the following
Declaration of Conformance concerning the DACS-386/UNIX,
Version 4.4.

A-i

DECLARATION OF CONFORMANCE

Compiler Implementor: DDC International A/S
01. Lundtoftevej 1B
2800 Lyngby, Denmark

Ada Validation Ada Validation Facility

Facility: National Computer Systems Laboratory (NCSL)
National Institute of Standards and Technology
Building 225, Room A266

Gaitherburg, MD 20899, U.S.A.

Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: DACS-386/UNIX, Version 4.4

Host Architecture: ICL DRS300
Host OS and Version: DRS/NX, Version 3, Level 1

Target Architecture: Same as host

Target OS and Version: Same as host

Implementor's Declaration

I, the undersigned, representing DDC International A/S, have implemented no

deliberate extensions to the Ads Language Standard ANSI/MIL-STD-1815A in the
compiler(s) listed in this declaration. I declare that DDC International A/S
is the owner of record of the Ada language compiler(s) listed above, and as

such, is responsible for maintaining said compiler(s) in conformance to
ANSI/MIL-STD-1815A. All certificates and registrations for Ada language

compiler(s) listed in this declaration shall be made only in the owner's
corporate name.

Date: 2; 6c44 '0(r/
DDC International A/S
Hasse Hansson, Department Manager

Owner's Declaration

I, the undersigned, representing DDC International A/S, take full
responsibility for implementation and maintenunce of the Ada compiler(s)

listed above, and agree to the public disclosure of the final Validation
Summary Report. I declare that all of the Ada language compilers listed, and

their host/taget performance, are in compliance with the Ada Language
Standard ANSI/MIL-STD-1815A.

Date:

DDC International A/S
Hasse Hansson, Department Manager

DOC International A/S GI. Lundtoftevel18 Telephone: Telex: Telefax:
DK-2800Lyngby +45 +45

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the DACS-386/UNIX, Version
4.4 compiler, as described in this Appendix, are provided by DDC
INTERNATIONAL A/S. Unless specifically noted otherwise, references in
this appendix are to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are not
a part of Appendix F, are:

package STANDARD is

type SHORT INTEGER is range -32_768 .. 32_767;
type INTEGER is range -2_147 483 648 .. 2 147 483_647;
type LONGINTEGER is range -2**63 .. 2**63 - Y;

type FLOAT is digits 6 range
-3.40282366920938E+38 .. 1.93428038904620E+38;

type LONGFLOAT is digits 15 range
-1.7976931348623157E+308 .. 1.7976931348623157E+308;

type DURATION is delta 2**(-l4) range
-131_072.00000 .. 131_071.00000

end STANDARD;

B-I

k -m •••mmm m

1 Appendix F

Implementation-Dependent Characteristics

F Implementation-Dependent Characteristics

This appendix describes the implementation-dependent characteristics
of DACS-3860/UNIX as required in Appendix F of the Ada Reference
Manual (ANSI/MIL-STD-1815A).

F.1 Implementation-Defined Pragmas

This section describes all implementation-defined pragmas.

F.1.1 Pragma INTERFACE-SPELLING

This pragma allows an Ada program to call a non-Ada program whose
name contains characters that would be an invalid Ada subprogram
identifier. It can also be used when subprogram names are case sen-
sitive, e.g. C routines. This pragma must be used in conjunction
with pragma INTERFACE, i.e. pragma INTERFACE must be specified for
the non-Ada subprogram name prior to using pragma
INTERFACESPELLING.

The pragma has the format:

pragma INTERFACESPELLING (subprogram name, string literal);

where the subprogram name is that of one previously given in pragma
INTERFACE and the string literal is the exact spelling of the inter-
faced subprogram in its native language.

F.1.2 Pragma INTERRUPTMHANDLER

The DACS-3869/UNIX® allows the use of pragma INTERRUPT HANDLER for
compatibility with other DACS compiler systems. In this implementa-
tion this pragma does not have any affect in the Ada program. The
following information is reference only. It has the format:

pragma INTERRUPTHANDLER;

The pragma must appear as the first thing in the specification of
the task object. The task must be specified in a package and not
a procedure.

F-1

DOC Intematonal A/S

Appendix F

Implementation-Dependent Characteristics

F.l.3 Pragma LTSTACK-SPACE

DACS-386*/UNIXs allows use of the pragma LT StackSpace for com-
patibility with other DACS compiler systems. In this
implementation, the pragma does not have any effect on the Ada
program. The following information is for reference only.

This pragma sets the size of a library task stack segment. The

pragma has the format:

pragma LTSTACKSPACE (T, N);

where T denotes either a task object or task type and N designates
the size of the library task stack segment in words.

The size of the library task stack is normally specified via the
representation clause:

for T'STORAGESIZE use N;

The size of the library task stack segment determines how many tasks
that can be created which are nested within the library task. All
tasks created within a library task will have their stacks allocated
from the same segment as the library task stack. Thus, pragma
LT STACKSPACE must be specified to reserve space within the library
task stack segment so that nested tasks' stacks may be allocated.

The following restrictions are placed on the use of LTSTACKSPACE:

1) It must be used only for library tasks.

2) It must be placed immediately after the task object or type
name declaration.

3) The library task stack segment size (N) must be greater
than or equal to the library task stack size.

F.2 Implementation-Dependent Attributes

No implementation-dependent attributes are defined.

F-2

DOC Intafnatonal A/S

.

Appendix F

Implementation-Dependent Characteristics

F.3 Packaae System

The package System for DACS-3860/UNIX® is:

package System is

type Word is new ShortInteger;
type DWord is new Integer;
type QWord is new LongInteger
type UnsignedWord is range 0..65535;
for UnsignedWord'SIZE use 16;
type UnsignedDword is range 0..16#FFFF FFFF#;
for UnsignedDWord'SIZE use 32;
type Byte is range 0..255;
for Byte'SIZE use 8;
subtype SegmentId is UnsignedWord;
type Address is record

offset : UnsignedDWord;
end record;

subtype Priority is integer range 0..31;
type Name is (iapx386_FM);

System-Name : constant Name := iapx386_FM,
Storage Unit : constant 16;
Memory _ize : constant 16#1 0000 0000#;
Min Int : constant := -16#8000_0000 0000 0000#;
Max -nt : constant := 16#7FFF FFFF-FFFF-FFFF#;
Max-Digits : constant := 15;
Max Mantissa : constant .= 31;
Fine Delta : constant 2#1.0#E-31;
Tick : constant := 0.000 000 062 5;

--machine dependent -

type InterfaceLanguage is (ASM86, PLM86, C86,
C86_REVERSE, ASMACF,
PLMACF, C ACF,
C RESERVEACF, ASM_NOACF,
PLMNOACF, CNOACF,
CREVERSENOACF);

type ExceptionId is record
unit-number : UnsignedDWord;
unique-number : UnsignedDWord;

end record;

type TaskValue is new Integer;
type AccTaskValue is access TaskValue;

F-3
OOC International A/S

Appendix F

Implementation-Dependent Characteristics

type Semaphore is record
counter : integer;
first : TaskValue;
last : TaskValue;

end record;

InItSemaphore : constant Semaphore'(l, 0, 0);

end SYSTEM;

F-4

ODC Intematonsi A/S

Appendix F

Implementation-Dependent Characteristics

F.4 Representation Clauses

F.4.1 Length Clause

A size attribute for a type T is accepted in the following cases:

- If T is a discrete type then the specified size must be greater
than anorequal to the number of bits needed to represent a value
of the type, and less than or equal to 32.

- If T is a fixed point type, a floating point type, an access type
or a task type the specified size must be equal to the number of
bits used to represent values of the type.

- If T is a record type that is not derived then the specified size
must be greater than or equal to the number of bits used to rep-
resent value of the type.

- If T is an array type that is not derived, and has a size known
at compile time then the specified size must be equal to the num-
ber of bits used to represent values of the type. In all other
cases the size attribute is not accepted.

Furthermore, the size attribute has only effect if the type is part
of a composite type.

- Using the STORAGESIZE attribute for a collection will set an up-
per limit on the total size of objects allocated in this collec-
tion. If further allocation is attempted, the exception
STORAGEERROR is raised.

- When STORAGE SIZE is specified in a length clause for a task, the
process stack area will be of the specified size. The process
stack area will be allocated inside the "standard" stack segment.

F.4.2 Enumeration Representation Clause

Enumeration representation clauses may specify representations in
the range of INTEGER'FIRST + l..INTEGER'LAST - 1.

Enumeration representation clauses are not supported for derived
types.

F-5
OOC International A/S

"V' Appendix F

Implementation-Dependent Characteristics

F.4.3 Record Representation Clauses

When representation clauses are applied to records the following
restrictions are imposed:

- the component type is a discrete type different from
LONGINTEGER,

- the component type is an array with a discrete element type dif-
ferent from LONG INTEGER,

- if the component is a record or an unpacked array, it must start
on a storage unit boundary, a storage unit being 16 bits,

- a record occupies an integral number of storage units,

- a record may take up a maximum of 32K storage units,

- a component must be specified with its proper size (in bits),
regardless of whether the component is an array or not,

- if a non-array component has a size which equals or exceeds one
storage unit (16 bits), the component must start on a storage
unit boundary, i.e. the component must be specified as:

component at N range 0..16 * M - 1;

where N specifies the relative storage unit number (0,1....) from
the beginning of the record, and M the required number of storage
units (1,2,...)

- the elements in an array component should always be wholly con-
tained in one storage unit,

- if a component has a size which is less than one storage unit, it
must be wholly contained within a single storage unit:

component at N range X .. Y;

..where N is as in the previous paragraph, and 0 <= X <= Y <= 15

If the record type contains components which are not covered by a
component clause, they are allocated consecutively after the com-
ponent with the value. Allocation of a record component without a
component clause is always aligned on a storage unit boundary.
Holes created because of component clauses are not otherwise util-
ized by the compiler.

F-6

DOC Intrational A/S

Appendix F

Implementation-Dependent Characteristics

F.4.3.1 Alignment Clauses

Alignment clauses for records are implemented with the following
characteristics:

- If the declaration of the record type is done at the outermost
level in a library package, any alignment is accepted.

- If the record declaration is done at a given static level
(higher than the outermost library level, i.e. the permanent
area), only word alignments are accepted.

- Any record object declared at the outermost level in a library
package will be aligned according to the alignment clause
specified for the type. Record objects declared elsewhere can
only be aligned on a word boundary. If the record type has been
associated a different alignment, an error message will be
issued.

- If a record type with an associated alignment clause is used in
a composite type, the alignment is required to be one word: an
error message is issued if this is not the case.

F.5 Implementation-Dependent Names for Implementation-Dependent
Coponents

None defined by the compiler.

F.6 Address Clauses

In the Dacs-3860/UNIXg implementation only static address clauses
are allowed, i.e. either a literal or a static expression.

F.7 Unchecked Conversions

Unchecked conversion is only allowed between objects of the same
size.

F.8 Input/Output Packages

The implementation supports all requirements of the Ada language. It
is an effective interface to the UNIX file system, and in the case
of the text I/O also an effective interface to the UNIX standard in-
put, standard output, and standard error streams.

F-7
DOC Intematnal A/S

Appendix F

Implementation-Dependent Characteristics

This section describes the functional aspects of the interface to
the UNIX file system, including the methods of using the interface
to take advantage of the file control facilities provided.

The Ada input-output concept as defined in Chapter 14 of the ARM
does not constitute a complete functional specification of the
input-output packages. Some aspects of the I/O system are not
described at all, with others intentionally left open for implemen-
tation. This section describes those sections not covered in the
ARM.

The UNIX operating system considers all files to be sequences of
characters. Files can either be accessed sequentially or randomly.
Files are not structured into records, but an access routine can
treat a file as a sequence of records if it arranges the record
level input-output. Two restrictions that apply are:

- If a direct access (using Iseek(2)) to standard input, standard
output, or standard error will cause a USEERROR to occur.

- Attempting to direct access (using iseek(2), open(2),
mknod(2), or pipe(2)) a UNIX pipe or FIFO will cause a
USE ERROR to occur.

Note that for sequential or text files (Ada files not UNIX external
files) RESET on a file in mode OUTFILE will empty the file. Also, a
sequential or text file opened as an OUTFILE will be emptied.

F.8.1 External Files

An external file is either a UNIX disk file, a UNIX FIFO, a UNIX
pipe, or any device defined in the UNIX directory. The use of
devices such as a tape drive or communication line may require spe-
cial access permissions or have restrictions. If an inappropriate
operation is attempted on a device, the USEERROR exception is
raised.

External files created within the UNIX file system shall exist after
the termination of the program that created it, and will be acces-
sible from other Ada programs. A form created with the FORM
parameter will also exist after program termination. However, pipes
and temporary files will not exist after program termination.

Creation of a file with the same name as an existing external file
will cause the existing file to be overwritten.

Creation of files with mode INFILE will cause USE ERROR to be
raised.

F-8

OOC Intmatonal A/S

Appendix F

Implementation-Dependent Characteristics

The name parameter to the input/output routines must be a valid UNIX
file name. If the name parameter is empty, then a temporary file is
created in the /tmp directory. This file is automatically deleted
when the program that created it terminates.

F.8.2 File Management

This section provides useful information for performing file manage-
ment functions within an Ada program.

The only restrictions in performing Sequential and Direct I/O are:

- The maximum size of an object of ELEMENTTYPE is 2_147_483_647
bits.

- If the size of an object of ELEMENT TYPE is variable, the maximum
size must be determinable at the point of instantiation from the
value of the SIZE attribute.

The NAME parameter

The NAME parameter must be a valid UNIX pathname (unless null). If
any directory in the pathname is inaccessible, a USEERROR is
raised.

The UNIX names "stdin", "stdout", and "stderr" can be used with
TEXTIO.OPEN. No physical opening of the external file is performed
and the Ada file will be associated with the already open external
file. These names have no significance for other packages.

Temporary files (NAME = null string) are created using tmpname(3)
and are deleted when CLOSED. Abnormal program termination may leave
temporary files in existence.

The FORM parameter

The FORM parameter has the following facilities:

- A FIFO special file can be opened using the open(2) system call.
This is achieved with the "FIFO" string. Note that this cannot
be used with CREATE.

The default value for this facility is "ORDINARY", which desig-
nates the creation of an ordinary file.

F-9
DOC International A/S

IMP
Appendix F

Implementation-Dependent Characteristics

An additional flag associated with FIFO specials is provided to
allow waiting or immediate return. This flag, and its status, is
specified with the additional strings, "0 NDELAY=ON" for ON and
"0 NDELAY=OFF" for OFF. Default is "0 NDELAY-OFF".

- The "APPEND" string can be used to open text files without empty-
ing the file. This parameter cannot be used with CREATE. The
default condition is "NOAPPEND".

- Access rights to a file can be controlled by using a
"MODE=<mode>" string in the CREATE procedure. <mode> is an octal,
decimal, or hexadecimal integer in the standard UNIX format.Default mode is 0644. This facility can also be used by OPEN to

change access permissions on existing files by means of the
chmod(2) system call.

If more than one of the three options (FIFO, APPEND, and MODE) are
included, the rightmost option is selected. Blanks are not sig-
nificant within any part of the string. The syntax of the FORM
parameter provides all default options as required in the Ada
Reference Manual:

<form_parameter> := [<option>]

where <option> := <access rights> I <fifo> I <append>

<accessrights> is MODEz<mode #>. The mode number can be in
decimal, octal (0###), or hexadecimal (0##).

<fifo> is either "FIFO [O_NDELAY= ONJOFF]" or "ORDINARY"

<append> is either "APPEND" or "NOAPPEND"

File Access

The following guidelines should be observed when performing file I/0
operations:

- At a given instant, any number of files in an Ada program can be
associated with corresponding external files.

- When sharing files between programs, it is the responsibility of
the programmer to determine the effects of sharing files.

- The RESET and OPEN operations to files of mode OUT FILE will
empty the contents of the file in SEQUENTIAL_1O and TEXTIO.

- Files can be interchanged between SEOUENTIAL_10 and DIRECT_10
without any special operations if the files are of the same ob-
ject type.

F-10

DOC International A/S

96.

Appendix F

Implementation-Dependent Characteristics

F.8.3 Package TEXT-IO

The specification of package TEXT_10:

with BASIC IO TYPES;

with 10_EXCEPTIONS;
package TEXT_I0 is

type FILETYPE is limited private;

type FILEMODE is (INFILE, OUTFILE);

type COUNT is range 0 .. LONG INTEGER'LAST;
subtype POSITIVE COUNT is COUNT range 1 .. COUNT'LAST;
UNBOUNDED: constant COUNT:= 0; -- line and page length

-- max. size of an integer output field 2#.... #
subtype FIELD is INTEGER range 0 .. 35;

subtype NUMBERBASE is INTEGER range 2 .. 16;

type TYPESET is (LOWERCASE, UPPERCASE);

-- File Management

procedure CREATE (FILE : in out FILE TYPE;
MODE : in FILE MODE :=OUTFILE;
NAME : in STRING
FORM : in STRING

procedure OPEN (FILE : in out FILE TYPE;
MODE : in FILE MODE;
NAME : in STRING;
FORM : in STRING

procedure CLOSE (FILE : in out FILETYPE)
procedure DELETE (FILE : in out FILE TYPE);
procedure RESET (FILE : in out FILETYPE; MODE: in FILE-MODE);
procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILE TYPE) return FILE-MODE;
function NAME (FILE : in FILETYPE) return STRING;
function FORM (FILE : in FILE-TYPE) return STRING;

function ISOPEN (FILE : in FILE TYPE return BOOLEAN;

-- control of default input and output files

F-11
OOC Inteitional A/S

Appendix F

Implementation-Dependent Characteristics

procedure SET INPUT (FILE : in FILE TYPE);
procedure SET-OUTPUT (FILE : in FILE-TYPE);

function STANDARD INPUT return FILE-TYPE;
function STANDARDOUTPUT return FILETYPE;

function CURRENT INPUT return FILE TYPE;
function CURRENTOUTPUT return FILETYPE;

-- specification of line and page lengths

procedure SET LINE LENGTH (FILE : in FILE TYPE; TO : in COUNT);
procedure SET-LINE-LENGTH (TO : in COUNT);

procedure SET PAGE LENGTH (FILE : in FILE TYPE; TO : in COUNT);
procedure SET-PAGE-LENGTH (TO : in COUNT);

function LINE LENGTH (FILE : in FILETYPE) return COUNT;
function LINE LENGTH return COUNT;

function PAGE LENGTH (FILE : in FILE TYPE) return COUNT;
function PAGELENGTH return COUNT;

-- Column, Line, and Page Control

procedure NEW LINE (FILE : in FILE TYPE;
SPACING : in POSITIVE COUNT 1);

procedure NEWLINE (SPACING : in POSITIVECOUNT 1);

procedure SKIPLINE (FILE : in FILE TYPE;
SPACING : in POSITIVE COUNT 1);

procedure SKIPLINE (SPACING : in POSITIVE-COUNT 1);

function END OF LINE (FILE : in FILETYPE) return BOOLEAN;
function ENDOFLINE return BOOLEAN;

procedure NEW PAGE (FILE : in FILETYPE);
procedure NEWPAGE;

procedure SKIP PAGE (FILE : in FILETYPE);
procedure SKIPPAGE;

function END OFPAGE (FILE : in FILETYPE) return BOOLEAN;
function ENDOFPAGE return BOOLEAN;

function END OF FILE (FILE : in FILETYPE) return BOOLEAN;
function ENDOFFILE return BOOLEAN;

procedure SET COL (FILE : in FILE TYPE;TO :in POSITIVE COUNT);
procedure SET-COL (TO : in POSITIVECOUNT);

procedure SETLINE (FILE : in FILETYPE;TO :in POSITIVE COUNT);

F-12

ODC International A/S

Appendix F

Implementation-Dependent Characteristics

procedure SETLINE (TO : in POSITIVE_COUNT);

function COL (FILE : in FILE-TYPE) return POSITIVE COUNT;
function COL return POSITIVE-COUNT;

function LINE (FILE : in FILETYPE) return POSITIVE-COUNT;
function LINE return POSITIVECOUNT;

function PAGE (FILE : in FILE-TYPE) return POSITIVE-COUNT;
function PAGE return POSITIVECOUNT;

-- Character Input-Output

procedure GET (FILE : in FILE TYPE; ITEM : out CHARACTER);
procedure GET (ITEM : out CHARACTER);
procedure PUT (FILE : in FILE TYPE; ITEM : in CHARACTER);
procedure PUT (ITEM : in CHARACTER);

-- String Input-Output

procedure GET (FILE : in FILE TYPE; ITEM : out CHARACTER);
procedure GET (ITEM : out CHARACTER);
procedure PUT (FILE : in FILE TYPE; ITEM : in CHARACTER);
procedure PUT (ITEM : in CHARACTER);

procedure GET LINE (FILE : in FILE TYPE;
ITEM : out STRING;
LAST : out NATURAL);

procedure GET LINE (ITEM : out STRING; LAST : out NATURAL);
procedure PUTLINE (FILE : in FILE TYPE; ITEM : in STRING);
procedure PUT-LINE (ITEM : in STRING);

F-13

DOC Internatona A/S

9 0 Appendix F

Implementation-Dependent Characteristics

-- Generic Package for Input-Output of Integer Types

generic
type NUM is range <>; is

DEFAULT WIDTH : FIELD - NUM'WIDTH;
DEFAULTBASE : NUMBERBASE := 10;

procedure GET (FILE : in FILE TYPE;
ITEM : out NUM;
WIDTH : in FIELD 0);

procedure GET (ITEM : out NUM;
WIDTH : in FIELD 0);

procedure PUT (FILE : in FILE TYPE;
ITEM : in NUM;
WIDTH : in FIELD DEFAULTWIDTH;
BASE : in NUMBERBASE DEFAULTBASE);

procedure PUT (ITEM : in NUM;
WIDTH : in FIELD DEFAULT WIDTH;
BASE : in NUMBERBASE DEFAULT-BASE);

procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
BASE : in NUMBERBASE DEFAULTBASE);

end INTEGER IO;

F-14

OOC international A/S

Appendix F

Implementation-Dependent Characteristics

-- Generic Packages for Input-Output of Real Types

generic
type NUM is digits <>;

package FLOATIO; is

DEFAULTFORE : FIELD := 2;
DEFAULT AFT : FIELD :- NUM'DIGITS - 1;
DEFAULTEXP : FIELD := 3;

procedure GET (FILE : in FILE TYPE;
ITEM : out NUM;
WIDTH : in FIELD 0);

procedure GET (ITEM : out NUM;
WIDTH : in FIELD 0);

procedure PUT (FILE : in FILETYPE;
ITEM : in NUM;
FORE : in FIELD DEFAULT FORE;
AFT : in FIELD DEFAULT AFT;
EXP : in FIELD DEFAULTEXP);

procedure PUT (ITEM : in NUM;
FORE : in FIELD DEFAULT FORE;
AFT : in FIELD := DEFAULT AFT;
EXP : in FIELD := DEFAULTEXP);

procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
AFT : in FIELD DEFAULT AFT;
EXP : in FIELD DEFAULTEXP);

end FLOAT_IO;

F-15
OOC Intenational A/S

11"1 Appendix F

Implementation-Dependent Characteristics

generic
type NUM is delta <>;

package FIXED_10 is

DEFAULTFORE : FIELD :- NUM'FORE;
DEFAULT AFT : FIELD :- NUM'AFT;
DEFAULTEXP : FIELD := 0;

procedure GET (FILE in FILE TYPE;
ITEM out NUM;
WIDTH in FIELD := 0);

procedure GET (ITEM out NUM;
WIDTH in FIELD 0);

procedure PUT (FILE in FILETYPE;
ITEM in NUM;
FORE in FIELD DEFAULT-FORE;
AFT in FIELD DEFAULT AFT;
EXP in FIELD DEFAULTEXP);

procedure PUT (ITEM in NUM;
FORE in FIELD DEFAULT FORE;
AFT in FIELD DEFAULTAFT;
EXP in FIELD DEFAULT EXP);

procedure GET (FROM in STRING;
ITEM out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
AFT : in FIELD DEFAULT AFT;
EXP : in FIELD DEFAULTEXP);

end FIXEDIO;

F-16

OOC Intemational A/S

Appendix F

Implementation-Dependent Characteristics

-- Generic Package for Input-Output of Enumeration Types

generic
type ENUM is (<>);

package ENUMERATION_10 is

DEFAULTWIDTH : FIELD :- 0;
DEFAULTSETTING : TYPESET UPPERCASE;

procedure GET (FILE : in FILETYPE; ITEM : out ENUM);
procedure GET (ITEM : out ENUM);

procedure PUT (FILE : FILE TYPE;
ITEM : in ENUM;
WIDTH : in FIELD := DEFAULT WIDTH;
SET : in TYPESET := DEFAULTSETTING);

procedure PUT (ITEM : in ENUM;
WIDTH : in FIELD DEFAULT WIDTH;
SET : in TYPESET DEFAULTSETTING);

procedure GET (FROM : in STRING;
ITEM : out ENUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in ENUM;
SET : in TYPESET DEFAULTSETTING);

end ENUMERATION 10;

-- Exceptions

STATUS ERROR; : exception renames 10 EXCEPTIONS.STATUS ERROR;
MODEERROR; : exception renames IOEXCEPTIONS.MODEERROR;
NAME ERROR; : exception renames 10 EXCEPTIONS.NAME ERROR;
USE ERROR; : exception renames IO-EXCEPTIONS.USE ERROR;
DEVICEERROR; : exception renames IO-EXCEPTIONS.DEVICE ERROR;
END ERROR; : exception renames 10_EXCEPTIONS.END ERROR;
DATA ERROR; : exception renames 10-EXCEPTIONS.DATA ERROR;
LAYOUTERROR; : exception renames IOEXCEPTIONS.LAYOUTERROR;

private

type FILE TYPE is new BASIC_10_TYPES.FILETYPE;

end TEXT_10;

F-17
DOC Intomationa A/S

Appendix F

Implementation-Dependent Characteristics

F.8.4 Package LOWLEVELIO

The specification of LOWLEVEL IO is:

with System;

package LOWLEVEL_10 is

subtype portaddress is System.UnsignedWord;

type 11io 8 is new Short integer range -128..127;
type 11_io 16 is new shortinteger;
type 11-io 32 is new integer;

procedure sendcontrol(device : in port address;
data : in System.Byte);

-- unsigned 8 bit entity

procedure sendcontrol(device : in portaddress;
data : in System.UnsignedWord);

-- unsigned 16 bit entity

procedure sendcontrol(device : in portaddress;
data : in System.UnsignedDWord);

-- unsigned 32 bit entity

procedure sendcontrol(device : in portaddress;
data : in 11_io_8);

-- signed 8 bit entity

procedure sendcontrol(device : in portaddress;
data : in 11_io_16);

-- signed 16 bit entity

procedure sendcontrol(device : in portaddress;
data : in 11_io_32);

-- signed 32 bit entity

procedure receive control(device : in port-address;
data : out System.Byte);

-- unsigned 8 bit entity

procedure receive control(device : in port_address;
data : out System.UnsignedWord);

-- unsigned 16 bit entity

procedure receive control(device : in portaddress;
data : out System.UnsignedDWord);

-- unsigned 32 bit entity

procedure receive control(device : in port_address;
data : out 11_io_8);

F-18

OOC International A/S

Appendix F

Implementation-Dependent Characteristics

-- signed 8 bit entity

procedure receivecontrol(device : in portaddress;
data : out 11_lo_16);

-- signed 16
bit entity

procedure receivecontrol(device : in port address;
data : out 11_To_32);

-- signed 32 bit
entity

private

pragma inline(sendcontrol, receivecontrol);

end LOWLEVELIO;

F.8.5 Package SEQUENTIAL-1O

In SEQUENTIAL_IO, type checking for DATAERROR has been excluded for

elements of an unconstrained type.

-- Source code for SEQUENTIAL_10

with 10_EXCEPTIONS;

generic

type ELEMENTTYPE is private;

package SEQUENTIALIO is

type FILETYPE is limited private;

type FILEMODE is (INFILE, OUTFILE);

-- File management

procedure CREATE(FILE : in out FILE TYPE;
MODE : in FILE MODE := OUT FILE;
NAME : in STRING :- "";
FORM : in STRING :- u9);

procedure OPEN (FILE : in out FILE TYPE;
MODE : in FILE MODE;
NAME : in STRING;
FORM : in STRING :- "");

procedure CLOSE (FILE : in out FILE TYPE);

F-19
OOC Intmatona A/S

Appendix F

Implementation-Dependent Characteristics

procedure DELETE(FILE : in out FILETYPE);

procedure RESET (FILE : in out FILETYPE; MODE : in FILEMODE);

procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILE-TYPE) return FILEMODE;

function NAME (FILE : in FILE TYPE) return STRING;

function FORM (FILE : in FILETYPE) return STRING;

function ISOPEN(FILE : in FILETYPE) return BOOLEAN;

-- input and output operations

procedure READ (FILE : in FILE TYPE;
ITEM : out ELEMENTTYPE);

procedure WRITE (FILE : in FILE TYPE;
ITEM : in ELEMENTTYPE);

function ENDOFFILE
(FILE : in FILE TYPE) return BOOLEAN;

-- exceptions

STATUS ERROR : exception renames 10 EXCEPTIONS.STATUS ERROR;
MODE ERROR : exception renames IO-EXCEPTIONS.MODE ERROR;
NAME ERROR exception renames IO-EXCEPTIONS.NAME-ERROR;
USE ERROR exception renames IO-EXCEPTIONS.USE ERROR;
DEVICEERROR exception renames IO-EXCEPTIONS.DEVICE ERROR;
END ERROR exception renames IO-EXCEPTIONS.END ERROR;
DATAERROR exception renames IO-EXCEPTIONS.DATAERROR;

private

type FILETYPE is new BASICIOTYPES.FILETYPE;

end SEQUENTIAL10;

F-20

DOC International A/S

Appendix F

Implementation-Dependent Characteristics

F.8.6 Package DIRECT-IO

In DIRECT 10, type checking for DATAERROR has been excluded for
elements of an unconstrained type.

with BASIC 10 TYPES;
with 10_EXCEPTIONS;

generic

type ELEMENTTYPE is private;

package DIRECTIO is

type FILETYPE is limited private;

type FILEMODE is (IN FILE, INOUT_FILE, OUTFILE);

type COUNT is range O..LONGINTEGER'LAST;

subtype POSITIVECOUNT is COUNT range 1..COUNT'LAST;

-- File management

procedure CREATE(FILE : in out FILETYPE;
MODE : in FILE MODE INOUT FILE;
NAME : in STRING "";

FORM : in STRING := "");

procedure OPEN (FILE : in out FILE TYPE;
MODE : in FILEMODE;
NAME : in STRING;
FORM : in STRING

procedure CLOSE (FILE : in out FILETYPE);

procedure DELETE(FILE : in out FILETYPE);

procedure RESET (FILE : in out FILE TYPE;
MODE : in FILEMODE);

procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILETYPE) return FILEMODE;

function NAME (FILE : in FILETYPE) return STRING;

function FORM (FILE : in FILETYPE) return STRING;

function ISOPEN(FILE : in FILETYPE) return BOOLEAN;

F-21
DOC Intonational A/S

Appendix F

Implementation-Dependent Characteristics

-- input and output operations

procedure READ (FILE : in FILE TYPE;
ITEM : out ELEMENT TYPE;
FROM : in POSITIVE COUNT);

procedure READ (FILE : in FILE TYPE;
ITEM : out ELEMENTTYPE);

procedure WRITE (FILE : in FILE TYPE;
ITEM : in ELEMENT TYPE;
TO : in POSITIVECOUNT);

procedure WRITE (FILE : in FILE TYPE;
ITEM : in ELEMENTTYPE);

procedure SETINDEX
(FILE : in FILE TYPE;
TO : in POSITIVECOUNT);

function INDEX (FILE : in FILETYPE) return POSITIVECOUNT;

function SIZE (FILE : in FILETYPE) return COUNT;

function ENDOFFILE
(FILE : in FILETYPE) return BOOLEAN;

-- exceptions

STATUS ERROR : exception renames 10 EXCEPTIONS.STATUS ERROR;
MODE ERROR : exception renames O-EXCEPTIONS.MODE ERROR;
NAME ERROR : exception renames 10 EXCEPTIONS.NAME ERROR;
USE ERROR : exception renames 10_EXCEPTIONS.USE ERROR;
DEVICE ERROR : exception renames IO-EXCEPTIONS.DEVICE ERROR;
END ERROR : exception renames 10-EXCEPTIONS.END ERROR;
DATAERROR : exception renames IO-EXCEPTIONS.DATA ERROR;

private

type FILETYPE is new BASIC_10_TYPES.FILETYPE;

end DIRECT IO;

F-22

DOC Intemational A/S

Appendix F

Implementation-Dependent Characteristics

F.9 Machine Code Insertions

The reader should be familiar with the code generation strategy and
the 80386 instruction set to fully benefit from this section.

As described in chapter 13.8 of the ARM [83] it is possible to
write procedures containing only code statements using the
predefined package MACHINECODE. The package MACHINECODE defines
the type MACHINE INSTRUCTION which, used as a record aggregate,
defines a machine code insertion. The following sections list the
type MACHINE INSTRUCTION and types on which it depends, give the
restrictions, and show an example of how to use the package
MACHINECODE.

F.9.1 Predefined Types for Machine Code Insertions

The following types are defined for use when making machine code in-
sertions (their type declarations are given in the following pages):

type opcodetype
type operand_type
type registertype
type segment register
type machine-instruction

The type REGISTER TYPE defines registers and register combinations.
The double register combinations (e.g. BX SI) can be used only as
address operands (BXSI describing [BX+SI]). The registers STi
describe registers on the floating stack. (ST is the top of the
floating stack).

The type SEGMENT REGISTER defines the four segment registers that
can be used to overwrite default segments in an address operand.

The type MACHINE INSTRUCTION is a discriminant record type with
which every kind of instruction can be described. Symbolic names
may be used in the form

name'ADDRESS

type opcode type is (
-- 8086 instructions:

m_AAA, m_AAD, m_AAM, mAAS,
m*ADC, m-ADD, mAND,
m*CALL, mCALLn,
m CBW, m CLC, m CLD m CLI,
mCMC, mCM, m CMPS, mCWD.
m_DAA, m DAS,
mDEC, m-DIV, mHLT,

F-23
DOC Intomnationai A/S

IL Appendix F

Implementation-Dependent Characteristics

in- IDIV, in IMUL, in IN, inINC,
m INT, iINTO, mn IRET,
in JA, inJAE, inJE, inJBE,
inJc, mnjcxz, in_JE, inJG,
inJGE, in_JL, i JLE, inJNA,
m- JNAE, in- JNB, m JNBE, inJNC
mnJNE, mnJNG, m~JNGE, inJNL,
muJNLE, mnjNO, inJNP, inJNS,
mnJNZ, inJ:, inJP, _-P

in -JPO, MiS, mnJZ, iJMP,

inLOCK, inLODS,

muLOOP, minLOOPE, m -_LOOPNE, muLOOPNZ,
mnLOOPZ, MuMOV, inMOVS, mnMUL,
m NEG, m NOP, mn NOT, in OR,
inOUT, inPOP, inPOPF, muPUSH,
muPUSHF,
in_RCL, m -RCR, in ROL, inROR,
m REP, muREPE, mnREPNE,
in RET, muRETP, inRETN, inRETNP,
m SA F,
muSAL, muSAR, inSHL, muSHR,
muSBB, muSCAS,
muSTC, m STD, in STI, inSTOS,
in_ SUB, muTEST, inWAIT, mu_XCHG,
muXLAT, mu_XOR,

-8087/80187/80287 Floating Point Processor instructions

m, FABS, inFADO, in FADDD, inFADOP,
mnFBLD, muFBSTP, minFCHS, m FNCLEX,
muFCOM, inFCOMD, mFCOMP, inFCOMPD,
mu_ FCOMPP, in_ FDECSTP, muFDIV, mu_FDIVD,
m FDIVP, inFDIVR, mnFDIVRD, in_FDIVRP,
m -FFREE, in- FIADD, muFIADDD, in FICOM,
M -FICOMD, minFICOMP, m -FICOMPD, muFIDIV,
inFIDIVD, muFIDIVR, mnFIDIVRD,
inFILD, inFILDD, muFILDL, muFIMUL,
in FIMULD, inFINCSTP, m FNINIT, inFIST,
inFISTD, inFISTP, muFISTPD, in_FISTPL,
m FISUB,
inFISUED, inFISUBR, muFISUERD, inFLD,
muFLDD, muFLDCW,' m FLDENV, muPLDLG2,
in_ FLDLN2, muFLDL2E, inFLDL2T, inFLDPI,
M*_FtDZ, in FLD1, inFmuL, in FMULD,
m*_FMULP, M -FNOP, m FPATAN, m FPREM,
mn FPTAN, in FRNDINT, muFRSTOR, mnFSAVE,
muFSCALE, inFSETPM, muFSQRT,
inFST, m FSTD, muFSTCW,

F-24

OOC Intenational A/S

Appendix F

Implementation-Dependent Characteristics

mn FSTENV, IUFSTP, in FSTPD, mn FSTSW,
mUFSTSWAX, mnFSUB, M FSUBD, inFSUBP,
tinFSUBR, fiuFSUBRD, mnFsUBRP, inFTST,
iinFWAIT-0 in Pmm, m FXCH, in FXTRACT,
m:FYL2X, in:FYL2XPl, in:F2Ml,

-80186/80286/80386 instructions:
-Notice that some immediate versions ot the 8086 instructions
-only exist on these targets (shifts, rotates, push, iniul, ...)

inBOUND, mUCLTS, mn ENTER, mnINS,
inLAR, in LEAVE, inLGDT, inLIDT
in LSL riOUTS mnPOPA, inPUSHiA
mnSGDT, mnSIDT,
mUARPL, mULLDT, in_LMSW, in_LTR,
m SLDT, IUSMSw, inSTR, inVERR,
inVERW,

-the 80386 specific instructions:

in SETA, mn SETAE, mn SETB, in SETBE,
mnSETC, in SETE, mnSETG, mSETGE,
m-SETL, mnSETLE, mUSETNA, in SETNAE,
mnSETNB, mnSETNBE, m SETNC, mnSETNE,
nmSETNG, niZSETNGE, mUSETNL, m SETNLE
in-SETNO, ni-SETNP, in-SETNS, inSETNZ,
min SETO, i mSETP, in SETPE, in_SETPO,
inSETS, mUSETZ,

m _8SF, m -BSR,
inBT, mBTC, at BTR, in_BTS,
inLFS, m LGS, inLSS,
in movzx Id MOVSX,
m~moVCR, [mMOVDB, at_MOVTR,
inSHLD, M-SHRD,

-the 80387 specific instructions

m FUCOM, in FUCOMP, in FUCOMPP

maFPREMI, zEFSIN, MuFCOS, in FSINCOS

F- 251 DOC Initnialeonal A/S

Appendix F

Implementation-Dependent Characteristics

-byte/word/dword variants (to be used, when not deductible from
-- context)

mn ADDCE, m nADCW, m -_ADCD,
inADDB, iiADDW, inADDD,
inANDB, in ANDW, inANDD,
Vn_BTW, m -_STD,
m -_BTCW, inBTCD,
in BTRW, in_BTRD,
inBTSW, in_8BTSD,
inCBWW, inCWDE,
mnCWDW in_CDQ,
m CM1PB, in_CMPW, in_CMPD,
mnCMPSB, inCMPSW, in_ CMPSD,
in DECB, inDECW, inDECD,
m DIVB, mnDIVW, in_ DIVD,
mnIDIVB, inIDIVW, in_ IDIVD,
in IMULB, mI2MULW, inIMULD,
mnINCB, in_INCW, in_INCD,
m INSB, in_INSW, in_INSD,
m LODSB, mnLODSW, inLODSD,
mn MOVB, minMOVW, minMOVD,
mnMOVSB, m -_MOVSW, in_MOVSD,
inMOVSXB, MnMOVSXW,
mnMOVZXB, MnMOVZXW,
inMKULE, minMULW, inMULD,
in NEGB, in_ NEGW, minNEGD,
mnNOTE, inNOTW, in_ NOTD,
in ORB, in_ORW, inORD,
m OUTSB, inOUTSW, in_OUTSD,
in-POPW, m_POPD,
mnPUSHW, minPUSHD,
in RCLB, inRCLW, inRCLD,
m RCRB, in_RCRW, minRCRD,
mn ROLB, in ROLW, minROLD,
mnRORB, inRORW, inRORD,
inSALE, in- SALW, inSALD,
in SARB, inSARW, inSARD,
m-SHLB, in_SHLW, inSHLDW,
inSHRB, m -SHRW, in SHRDW,
in SBB, inSEEW, mnSBBD,
mnSCASB, m SCASW, in_ SCASD,
inSTOSB, mnSTOSW, inSTOSD,
in_SUBB, inSUEW, in_ SUED,
in TESTE, in TESTW, in_ TESTD,
m XORB, mXORW, inXORD,
in DATAB, in DATAW, inDATAD

-Special 'instructions'

in label, in reset);

F-26

DOC International A/S

Appendix F

Implementation-Dependent Characteristics

type operandtype is (none, -- no operands

immediate, -- 1 immediate operand
register, -- 1 register operand
address, -- 1 address operand
systemaddress, -- 1 'address operand
name, -- CALL name
registerimmediate, -- 2 operands: dest is

-- register, source is
-- immediate

register_register, -- 2 register operands
register_address, -- 2 operands: dest

-- is register,
-- source is-address

address_register, -- 2 operands: dest is
-- address,
-- source is register

registersystemaddress, -- 2 operands: dest is
-- register,
-- source is 'address

systemaddressregister, -- 2 operands: dest is
-- 'address,
-- source is register

addressimmediate, -- 2 operands: dest is
-- 'address,
-- source is immediate

systemaddressimmediate, -- 2 operands: dest is
-- 'address,

-- source is immediate
immediateregister, -- only allowed for OUT port

-- is
-- immediate source is
-- register

immediate immediate, -- only allowed for ENTER
registerregisterimmediate, -- allowed for

-- IMULimm,SHRDimm, and
-- SHLDimm

registeraddress immediate -- allowed for IMULimm
register_systemiddress immediate -- allowed for IMULimm
address register_immediate -- allowed for SHRDimm,

-- SHLDimm
systemaddressregister immediate -- allowed for SHRDimm,

-- SHLDimm

type register_type is (AX, CX, DX, BX, -- word registers
SP, BP, SI, DI, --

AL, CL, DL, BL, -- byte registers
AH, CH, DH, BH, --

F-27
DOC Intemational A/S

17 RAppendix F

Implementation-Dependent Characteristics

EAX, ECX, EDX, EBX -- dword registers
ESP, EBP, ESI, EDI

ES, CS, SS, DS, -- selector registers
FS, GS

BXSI, BXDI, -- 8086/80186/80286
BPSI, BP_DI, -- combinations
ST, ST1, ST2, ST3, -- floating stack

-- registers
ST4, ST5, ST6, ST7,
nil);

type segment_register is (ES, CS, SS, DS, FS, GS, nil);

subtype machinestring is string (l..100);

pragma page;
type machine-instruction (operandkind : operand_type is record

opcode : opcode_type;

case operandkind is
when immediate =>

immediate : integer;

when register =>
r_register : register_type;

when address =>
a_segment : register_type;
a addressreg : register_type;
a-offset : integer;

when systemaddress =>
saaddress : system.address;

when name =>
n_string : machinestring;

when registerimmediate =>
r_i_register : register_type;
r_£_immediate : integer;

when registerregister ->
r_rregisterto : register_type;
r_r_registerfrom : register_type;

when registeraddress a>
r_a_register_to : register_type;
r_a segment : segment_register;
r_a_address_reg : register_type;

F-28

DOC InteMntional A/S

Appendix F

Implementation-Dependent Characteristics

r a offset : integer;

when addressregister ->
arsegment : segment register;
a_r address_reg : register_type;
a_roffset : integer;
a-r-registerfrom : registertype;

when register_systemaddress ->
r_saregister to : registertype;
r sa address : system.address

when systemaddress register =>
sa_r address : system.address;
sa_r reg_from : registertype;

when address immediate =>
a_i segment : segmentregister;
a_i_addressreg : registertype;
a i offset : integer;
a_i_immediate : integer;

when systemaddressimmediate ->
sa i address : system.address;
sa_i_immediate : integer;

when immediateregister =>
i_r-register : integer;
i_r-register : registertype;

when immediate immediate =>
i i immediatel integer;
i_i_immediate2 : integer;

when registerregister-immediate ->
r_r_i_registerl : registertype;
r_r i register2 : registertype;
r r i immediate2 integer;

when registeraddress immediate ->
r a i register : register-type;
ra _i_segment : register-type;
r a i addressreg : register-type;
r a i offset : integer;-
r a i immediate : integer;

when register_systemaddressimmediate =>
r sa i register : registertype;
addrlO : system.address;
r sa i immediate : integer;

F-29
DOC Intemational A/S

Appendix F

Implementation-Dependent Characteristics

when addressregister immediate ->
a_r_iregister : register_type;
a_r isegment : register type;
a r i address reg : register type;
a r i offset : integer;
ari iuimmediate : integer;

when systemaddress registerimmediate =>
sa r i address : system.address;
sa r i register : registertype;
sa r i immediate integer;

when others =>
null;

end case;
end record;

F.9.2 Restrictions

Only procedures, and not functions, may contain machine code inser-
tions. Also procedures that use machine code insertions must be
specified with PRAGMA inline.

Symbolic names in the form x'ADDRESS can only be used in the follow-
ing cases:

1) x is an object of scalar type or access type declared as an
object, a formal parameter, or by static renaming.

2) x is an array with static constraints declared as an object
(not as a formal parameter or by renaming).

3) x is a record declared as an object (not a formal parameter
or by renaming).

All opcodes defined by the type OPCODE_type except the m CALL can be
used.

Two opcodes to handle labels have been defined:

mlabel: defines a label. The label number must be in the range
1 <= x <- 25 and is put in the offset field in the first
operand of the MACHINEINSTRUCTION.

m_reset: used to enable use of more than 25 labels. The label num-
ber after a mRESET must be in the range 1 <= x <-25. To
avoid errors you must make sure that all used labels have
been defined before a reset, since the reset operation
clears all used labels.

F-30

DOC International A/S

Appendix F

Implementation-Dependent Characteristics

All floating instructions have at most one operand which can be any
of the following:

- a memory address
- a register or an immediate value
- •an entry in the floating stack

F.9.3 Examples

The following section contains examples of how to use the machine
code insertions and lists the generated code.

F.9.3.1 Example Using Labels

The following assembler code can be described by machine code inser-
tions as shown:

MOV AX,7
MOV CX,4
CMP AX,CX
JG 1
JE 2
MOV CX,AX

1: ADD AX,CX
2: MOV SS: [BP+DI], AX

with MACHINECODE; use MACHINECODE;
package exampleMC is

procedure test labels;
pragma inline (testlabels);

end exampleMC;

package body exampleMC is

procedure testlabels is

begin

MACHINE INSTRUCTION'(register immediate, m MOV, AX, 7);
MACHINE -INSTRUCTION'(registerimmediate, mMOV, CX, 4);
MACHINE INSTRUCTION'(register register, m CMP, AX, CX);
MACHINE-INSTRUCTION'(immediate, m_JG, 1);
MACHINE-INSTRUCTION'(immediate, m JE, 2);
MACHINE INSTRUCTION'(registerregister, mMOV, CX, AX);
MACHINE INSTRUCTION' (immediate, m label, 1);

F-31
DOC Intemational A/S

Appendix F

Implementation-Dependent Characteristics

MACHINE INSTRUCTION'(register_register, m ADD, AX, CX);
MACHINE-INSTRUCTION'(immediate, m label, 2);
MACHINEINSTRUCTION'(address register,mMOV,SS,BP_DI,O,AX);

end test labels;

end exampleMC;

F.10 Package Tasktypes

The TaskTypes package defines the TaskControlBlock type.

with System;

package TaskTypes is

subtype Offset is System.UnsignedDWord;
subtype BlockId is System.UnsignedDWord;

type TaskEntry is new System.UnsignedDWord;
type EntryIndex is new System.UnsignedDWord;
type AlternativeId is new System.UnsignedDWord;
type Ticks is new System.UnsignedDWord;
type Bool is new Boolean;
for Bool'size use 8;
type UIntg is new System.UnsignedDword;

type Semaphore is record
counter : Integer;
first, last : System.TaskValue;

end record;

type TaskState is (Initial,
-- The task is created, but activation
-- has not started yet.

Engaged,
-- The task has called an entry, and the
-- call is now accepted, ie. the rendezvous
-- is in progress.

Running,
-- Covers all other states.

Delayed,
-- The task awaits a timeout to expire.

EntryCallingTimed,
-- The task has called an entry which
-- is not yet accepted.

F-32

OOC Intornational A/S

dffi

Appendix F

Implementation-Dependent Characteristics

EntryCallingUnconditional,
-- The task has called an entry
-- unconditionally,
-- which is not yet accepted.

SelectingTimed,
-- The task is waiting in a select
-- statement with an open delay
-- alternative.

SelectingUnconditional,
-- The task waits in a select statement
-- entirely with accept statements.

SelectingTerminable,
-- The task waits in a select statement
-- with an open terminate alternative.

Accepting,
-- The task waits in an accept statement.

Synchronizing,
-- The task waits in an accept statement
-- with no statement list.

Completed,
-- The task has completed the execution of
-- its statement list, but not all
-- dependent tasks are terminated.

Terminated);
-- The task and all its descendants
-- are terminated.

for TaskState use (Initial => 16#00#
Engaged -> 16#08#
Running -> 16#10#
Delayed => 16#18#
EntryCallingTimed => 16#20#
EntryCallingUncondltional => 16#28#
SelectingTimed -> 16#31# ,
SelectingUnconditional -> 16#39#
SelectingTerminable -> 16#41#
Accepting -> 16#4A#
Synchronizing -> 16#53#
Completed -> 16#5C#
Terminated => 16#64#);

for TaskState'size use 8;

type TaskTypeDescriptor is
record

F-33
OOC Intenational A/S

"i~l~oAppendix F

Implementation-Dependent Characteristics

priority :System.Priority;
entry_count :Ulntg;
block id :Blockld;
first own address :SysteM.Address;
module-number :Ulntg;
entry_number :Ulntg;
code address :System.Address;
stacki-size :System.DWord;
dummy : Integer;
stack_segment-size: Ulntg;

end record;

for TaskypeDescriptor use
record

priority at 0 range 0. .31;
entry_count at 2 range 0. .31;
block -id at 4 range 0. .31;
first -own -address at 6 range 0. .31;
module-number at 8 range 0. .31;
entry_number at 10 range 0. .31;
code address at 12 range 0. .31;
stack-size at 14 range 0. .31;
dummy at 16 range 0. .31;
stack segment_size at 18 range 0. .31;

end record;

type AccTaskTypeDescriptor is access TaskypeDescriptor;

type NPXSaveArea is array(l. .54) of System.UnsignedWord;

pragma page;
type TaskontroiBlock is

record
sem :Tasktypes.Semaphore; -- Should be system.semaphore

-but 4.2 version of
-system is still used

-Delay queue handling

dnext : System.TaskValue;
dprev :Systezu.TaskValue;
ddelay :Ticks;

-Saved registers

SS : System.UnsignedWord
SP : Offset;

-Ready queue handling

next System.TaskValue

F- 34

O0C Internationai A/S

Appendix F

Implementation-Dependent Characteristics

-- Semaphore handling

semnext : System.TaskValue

-- Priority fields

priority : System.Priority;
saved_priority : System.Priority;

-- Miscelleanous fields

time slice : System.UnsignedWord;
NPXFlag : Bool;
InterruptFlag : Bool;
ReadyCount : System.Word;

-- Stack Specification

stack start : Offset;
stack-end : Offset;

-- State fields

state : TaskState;
is abnormal : Bool;
is activated : Bool;
failure : Bool;

-- Activation handling fields

activator :System.TaskValue;
act chain : System.TaskValue;
next chain : System.TaskValue;
no not act : System.Word;
act block : Blockld;

-- Accept queue fields

partner : System.TaskValue;
next_partner : System.TaskValue;

-- Entry queue fields

next-caller : System.TaskValue;

-- Rendezvous fields

called task : System.TaskValue;
taskentry : TaskEntry;
entry_index : EntryIndex;
entry_assoc : System.Address;
call params : System.Address;

F-35

DOC Intemationai A/S

Appendix F

Implementation-Dependent Characteristics

alt id : Alternativeld;

excp_id :System.Exceptionld;

-Dependency fields

parent -task : Systern.TaskValue;
parent block :Blockld;
child tEask :Systewn.TaskValue;
next child :SySteM.TaskValue;
first child :System.TaskValue;
prey Zchild :System.TaskValue;
child act :System.Word;
block act :System.Word;
terminated-task: System.TaskValue;

-Abortion handling fields

busy : System.Word;

-Auxiliary fields

ttd : AccTaskTypeDescriptor;
FirstCaller : System.TaskValue;

-Run-Time System fields

ACF .System.UnsignedWord; -- cf. User's Guide
-- 9.4.2

collection :System.Address;

-NPX save area

-When the application is linked with /NPX, a special
-save area for the NPX is allocated at the very end
-- of every TCB.

-- case NPXPresent is
-- when TRUE => NPXsave :NPXSaveArea;
-- when FALSE -> null;

-- end case;

end record;

for TaskControlBlock use
record

sem at 0 range 0. .95;
dnext at 6 range 0. .31;
dprev at 8 range 0. .31;
ddelay at 10 range 0. .31;
SS at 12 range 0. .15;
SP at 13 range 0. .31;

F-36

DOC International A/S

4
k 1100

Appendix F

Implementation-Dependent Characteristics

next at 15 range 0.31;
semnext at 17 range 0..31;
priority at 19 range 0..31;
saved priority at 21 range 0..31;
time slice at 23 range 0..15;
NPXFlag at 24 range 0..7;
InterruptFlag at 24 range 8..15;
ReadyCount at 25 range'0..15;
stack start at 26 range 0..31;
stack end at 28 range 0..31;
state at 30 range 0..7;
is abnormal at 30 range 8..15;
is activated at 31 range 0..7;
failure at 31 range 8..15;
activator at 32 range 0..31;
act chain at 34 range 0..31;
next chain at 36 range 0..31;
no not act at 38 range 0..15;
act block at 39 range 0..31;
partner at 41 range 0..31;
next_partner at 43 range 0..31;
next caller at 45 range 0..31;
called task at 47 range 0..31;
task_entry at 49 range 0..31;
entry_index at 51 range 0..31;
entry_assoc at 53 range 0..31;
call_params at 55 range 0..31;
alt id at 57 range 0..31;
excp_id at 59 range 0..63;
parenttask at 63 range 0..31;
parentblock at'65 range 0..31;
child task at 67 range 0..31;
next child at 69 range 0..31;
first child at 71 range 0..31;
prev Zhild at 73 range 0..31;
child act at 75 range 0..15;
block act at 76 range 0..15;
terminated-task at 77 range 0..31;
busy at 79 range 0..15;
ttd at 80 range 0..31;
FirstCaller at 82 range 0..31;
ACF at 84 range 0..31;
collection at 86 range 0..31;

end record;

end TaskTypes;

C iF-37DOC nternational A/S

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

$ACCSIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIGID 1..125 -> 'A', 126 -> '1'
Identifier the size of the
maximum input line length with
varying last character.

$BIGID2 1..125 -> 'A', 126 -> '2'
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 1..63 -> 'A', 64-> '3',
Identifier the size of the 65..126 -> 'A'
maximum input line length with
varying middle character.

$BIGID4 1..63 -> 'A', 64 -> '4',
Identifier the size of the 65..126 -> 'A'
maximum input line length with
varying middle character.

$BIGINTLIT 1..123 -> 0, 124..126 -> 298
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIGREALLIT 1..121 -> 0, 122..126 -> 690.0
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the

C-1

maximum line length.

$BIGSTRINGi 1..63 -> 'A'
A string literal which when
catenated with BIG STRING2
yields the image of BIGIDi.

$BIGSTRING2 l..62 -> 'A', 63 -> '1'
A string literal which when
catenated to the end of
BIGSTRING1 yields the image of
BIGIDl.

$BLANKS 1..106 ->
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTLAST 2147483647
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

SDEFAULTMEMSIZE 16#100000000#
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULTSTORUNIT 16
An integer literal whose value
is SYSTEM.STORAGEUNIT.

$DEFAULT SYS NAME IAPX386_FM
The value of the constant
SYSTEM.SYSTEMNAME.

$DELTA DOC 2#1.0#E-31
A real literal whose value is
SYSTEM.FINEDELTA.

$FIELDLAST 35
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FIXEDNAME NOSUCHTYPE
The name of a predefined
fixed-point type other than
DURATION.

$ FLOAT NAME NOSUCHTYPE
The name of , a predefined
floating-point type other than

C-2

FLOAT, SHORTFLOAT, or
LONGFLOAT.

$GREATER_THANDURATION 100000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATERTHANDURATIONBASELAST 200000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGHPRIORITY 31
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGAL EXTERNALFILENAMEl ILLEGAL/!*/@#$%-^

An external file name which
contains invalid characters.

$ILLEGALEXTERNALFILENAME2 ILLEGAL&(*/)_+-
An external file name which
is too long.

$INTEGERFIRST -2147483648
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGERLAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGERLASTPLUS_1 2147483648
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESSTHANDURATION -100000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESSTHANDURATIONBASEFIRST -200000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$LOWPRIORITY 0
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

C-3

$MANTISSADOC 31

An integer literal whose value
is SYSTEM.MAX MANTISSA.

$MAXDIGITS 15
Maximum digits supported for
floating-point types.

$MAXINLEN 126
Maximum input line length
permitted by the implementation.

$MAXINT 9223372036854775807
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAXINTPLUS_1 9223372036854775808
A universal integer literal
whose value is SYSTEM.MAXINT+l.

$MAXLENINTBASED-LITERAL l..2 -> '2:', 3..123 -> '0',
A universal integer based 124..126 -> '11:'
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

$MAXLENREALBASEDLITERAL l..3 -> '16:', 4..122 -> '0',
A universal real based literal 123..126 -> 'F.E:'
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAXSTRING LITERAL I-> ... , 2..125 -> 'A',
A string literal of size 126 ->
MAXINLEN, including the quote
characters.

$MININT -9223372036854775808
A universal integer literal
whose value is SYSTEM.MININT.

$MINTASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME NOSUCHTYPE

C-4

A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORTINTEGER,
LONGFLOAT, or LONGINTEGER.

$NAMELIST IAPX386_FM
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEGBASEDINT 16#FFFFFFFFFFFFFFFF#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

$NEWMEMSIZE 16#100000000#
An integer literal whose value
is a permitted argument for
pragma memorysize, other than
$DEFAULTMEMSIZE. If there is
no other value, then use
$DEFAULTMEMSIZE.

SNEWSTOR UNIT 16
An integer literal whose value
is a permitted argument for
pragma storage unit, other than
$DEFAULT STOR UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGE UNIT.

$NEWSYSNAME IAPX386_FM
A value of the type SYSTEM.NAME,
other than $DEFAULTSYSNAME. If
there is only one value of that
type, then use that value.

$TASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one inout
parameter.

$TICK 0.000_000_062_5
A real literal whose value is
SYSTEM.TICK.

C-5

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 44 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the
form AI-ddddd is to an Ada Commentary.

A39005G
This test unreasonably expects a component clause to pack an array
component into a minimum size (line 30).

B97102E
This test contains an unintended illegality: a select statement
contains a null statement at the place of a selective wait alternative
(line 31).

C97116A
This test contains race conditions, and it assumes that guards are
evaluated indivisibly. A conforming implementation may use interleaved
execution in such a way that the evaluation of the guards at lines 50 &
54 and the execution of task CHANGING OF THE GUARD results in a call to
REPORT.FAILED at one of lines 52 or 56.

BC3009B
This test wrongly expects that circular instantiations will be detected
in several compilation units even though none of the units is illegal
with respect to the units it depends on; by AI-00256, the illegality
need not be detected until execution is attempted (line 95).

CD2A62D
This test wrongly requires that an array object's size be no greater
than 10 although its subtype's size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests]
These tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length clause
and attribute, whose interpretation is considered problematic by the WG9
ARG.

CD2A8lG, CD2A83G, CD2A84M & N, & CD50110
These tests assume that dependent tasks will terminate while the main
program executes a loop that simply tests for task termination; this is
not the case, and the main program may loop indefinitely (lines 74, 85,
86 & 96, 86 & 96, and 58, resp.).

D-1

CD2Bl5C & CD7205C
These tests expect that a 'STORAGE SIZE length clause provides precise
control over the number of designated objects in a collection; the Ada
standard 13.2:15 allows that such control must not be expected.

CD2DllB
This test gives a SMALL representation clause for a derived fixed-point
type (at line 30) that defines a set of model numbers that are not
necessarily represented in the parent type; by Commentary AI-00099, all
model numbers of a derived fixed-point type must be representable values
of the parent type.

CD5007B
This test wrongly expects an implicitly declared subprogram to be at the
address that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests]
These tests check various aspects of the use of the three SYSTEM
pragmas; the AVO withdraws these tests az being inappropriate for
validation.

CD7105A
This test requires that successive calls to CALENDAR.CLOCK change by at
least SYSTEM.TICK; however, by Commentary AI-00201, it is only the
expected frequency of change that must be at least SYSTEM.TICK --
particular instances of change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute, whose
interpretation is considered problematic by the WG9 ARG.

CD7205D
This test checks an invalid test objective: it treats the specification
of storage to be reserved for a task's activation as though it were like
the specification of storage for a collection.

CE21071
This test requires that objects of two similar scalar types be
distinguished when read from a file--DATA ERROR is expected to be raised
by an attempt to read one object as of the other type. However, it is
not clear exactly how the Ada standard 14.2.4:4 is to be interpreted;
thus, this test objective is not considered valid. (line 90)

CE3111C
This test requires certain behavior, when two files are associated with
the same external file, that is not required by the Ada standard.

CE3301A
This test contains several calls to END OF LINE & ENDOF PAGE that have
no parameter: these calls were intended to specify a file, not to refer
to STANDARD INPUT (lines 103, 107, 118, 132, & 136).

D-2

CE3411B
This test requires that a test file's column number be set to COUNT'LAST
in order to check that LAYOUT ERROR is raised by a subsequent PUT
operation. But the former operation will generally raise an exception
due to a lack of available disk space, and the test would thus encumber
validation testing.

E28005C
This test expects that the string "-- TOP OF PAGE. --63" of line 204
will appear at the top of the listing page due to a pragma PAGE in line
203; but line 203 contains text that follows the pragma, and it is this
that must appear at the top of the page:

D-3

APPENDIX E

COMPILER OPTIONS AS SUPPLIED BY

DDC-I, Inc

Compiler: DACS-386/UNIX, Version 4.4

ACVC Version: 1.10

OPTION EFFECT

One invokes the Ada compiler at the UNIX shell with the following
command:

$ ada (<option>) <source-file>
where <option> is:

-c <file> Specifies the configuration file.
-d Generates information for the DDC-I Symbolic Ada

Debugger.
-e <file> Directs error messages to specified file.
l<library> Specifies program library used.
-L Generates list file.
-n Suppresses run-time checks.
-s Copies Ada source text to program library

(default).
-/s Does not copy Ada source text to program library.
-x Creates a cross reference listing.

E-1

